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Block 20 (cont'd)

Many problems in early vision are iU posed'. Edge detection is a typical
example. This paper applies regularization techniques to the problem of edge
detection. We derive an optimal filter for edge detection with a size controlled
by the regularization parameter A and compare it to the Gaussian filter. A
formula relating the signal-to-noise ratio to the parameter A is derived from
regularization analysis for the case of small values of A. We also discuss
the method of Generalized Cross Validation for obtaining the optimal filter
scale. Finally, we use our framework to explain two perceptual phenomena:
coarsely quantized images becoming recognizable by either blurring or adding
noise.
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1 Introduction

Edge detection can be considered as a problem of numerical differentiation
which can be shown to be an ill-posed problem 3. One approach to solve such
an ill-posed problem is to regularize it. Standard regularization techniques
suggest the use of Gaussian-like filters before differentiation2' 4 . In this paper,
we address the issue of how to estimate the optimal scale of the filter, that is,
the amount of smoothing required by the given image data. More precisely,
we will:

1. Obtain a regularization filter for edge detection and show that it can
be seen as a generalization of the Poggio, Voorhees and Yuille filter
(1985) (PVY filter) 2

2. Understand the role of the parameter A (a problem mentioned by
T.Poggio and V.Torre 1984 3) and find out how to calculate it. We
will show that the optimal value of A, which controls the size of the
filter, is related to the signal-to-noise ratio.

3. Compare the optimal filter with the Gaussian filter and PVY filter. We
show how stable aT (the size of the gaussian filter) is with respect to A.
This also corresponds to the stability of the width of the optimal filter
with respect to the parameter A.

4. Show that the perceptual phenomena of improved recognizability of
coarsely quantized images by either adding noise or blurring can be
understood in terms of scale changes in the edge detector's filter.

5. Apply this filter to edge detection. Given the image data, we use
Canny's7 edge detector but using the scale provided by the regulariza-
tion analysis. More precisely, the noise in the image is first computed,
then the signal-to-noise ratio is obtained and finally the A parameter
is used to set the scale of the filter used in computing the edges.

6. Compare the standard regularization techniques with the Generalized
Cross Validation method for finding the optimal A.

7. Propose biological mechanisms for selecting the optimal scale.
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We now give an outline of the paper. Chapter 2 is a brief summary of
results relating to ill-posed problems, regularization analysis and the varia-
tional method. In Chapter 3 we derive the optimal filter. We show that this
filter gives the solution of the ill-posed problem of finding the exact signal
from noisy data. In Chapter 4 we compare the optimal filter, Gaussian filter
and PVY filter. In Chapter 5 we analyze the role of the parameter A. In
Chapter 6 we present an implementation of the edge detection results from
Chapter 4 for computational vision. In Chapter 7 we give a possible expla-
nation for the phenomena of improved recognizability of coarsely quantized
image when either noise is added or blurring. In Chapter 8 we compare
the method of Generalized Cross Validation (GCV) for finding A with the
standard regularization analysis.

2 Framework for Edge Detection

Regularization Techniques for Ill-posed Problems
A problem

Az = u (2.1)

for which the class S of solutions z, given A and u, is not compact (changes
on the right-hand side of the equation can take u outside the set AS) is
called ill-posed. The approach suggested by Tikhonov to deal with ill-posed
problems is to construct approximate solutions of equation (2.1) that are
stable under small changes in the data u.

If the right-hand side of equation (2.1) is known only approximately, we
have u(x,y) = uT(z,y) + v(z,y) , where uT(z,y) is the true solution and
v(z,y) is noise. Then,

= v)= V +(wV)

whee ZW, ) =k(w, V) = TW )+k(w,z.)
where

Az = IGO fja K(z - 4y - r)z( ,r)d dr (2.2)

and k(w, v)- is the Fourier transform of K(x, y). It would seem natural to
take the solution of equation (2.1) as being

2



z(X,y) 1 f0  ZT(W, V)e-'(wx+P)dw d+ v( )(w+Wdw dv]

since UT(W, V) = k(w, V)ZT(W, v). However, this function may not exist since
the last integral may diverge. Furthermore, even if this ratio does have en
inverse Fourier transform, the deviation from zero (in the C- or L2-metric)
can be arbitrarily large, and thus, we cannot think of the exact solution of
equation (2.1) as an approximate solution of the equation with approximate
right-hand side.

Finding edges in an image is in general an ill-posed problem 4, since it
involves taking an appropriate derivative of noisy data (notice that we do
not specify which derivative operator should be used: it may be a directional
derivative 4 or any other desirable differential operator). The differentiation
of the function u(z) is ill-posed, since it can be seen as a solution of equation
2.1 for the operator A of the form

j z( )d h(x - )z( )d = u(x)

where h(x) is the step function. As described by Rheinsch9 and by Poggio and
Torre 3, this problem can be regularized by smoothing the data before taking
derivatives. The idea is to consider the regularized solution z of equation
(2.1), with A being the imaging operator, such that z is sufficiently well-
behaved for numerical differentiation and as close as possible to the true
data.

Tikhonov1 proves that, for the case of one dimensional image data, to
approximate a solution of equation (2.1) one takes the solution of a different
problem, the one of minimizing the functional given by the following equa-
tion, that is close to the original problem for small values of the error in the
data:

M , ! f'rAz - u]2d dy + Af0[z] (2.3)

where u(z, y) is the image data, A is the regularization parameter, A is in
our special case a convolution operator and 11[z] is the stabilizing operator.
We will be considering the special case where

3



( + v) Z' y) dzdy.

The operator Q[z] forces to smooth the data and the motivation to choose
this particular stabilizing operator is to guarantee a desired smoothness in
the solution. The order of the derivative in Sl[z], controlled by the parameter
p, should be high enough to ensure the appropriate degree of differentiability
in z required by the derivative operations that has to be performed next.
It should be pointed out that, whereas the original problem (2.1) does not
have the property of stability, the problem of minimizing the functional
M[z, uj is stable under small changes in the right-hand side u. This stability
has been attained by narrowing the class of possible solutions by introducing
the stabilizing functional Q[z].

3 The Optimal Filter

The Fourier transform of(- + -$)P/2z is M(w, v)z(w, v), where M(w, v) =
(W 2 + Vi)P. Using Parseval,'s theorem we can rewrite equation (2.3) as

MA~~z, uf I'-~ jj [k(w, v)z(w, v)-u(w, v)j[k(-w, -v)z(--w, -v)-u(-w,--v)Jdw dv

Lf (~WI + V2)Pz(W, V)Z(-w, v)dwdv}

The associated Euler-Lagrange equation is

OMA19-, - = [k(w, v)z(w, v) - u(w, v)]k(-w, -v) + A(w2 + V2),z(W, V) = 0.

For the special case where p = 2 (stabilize with Laplacian) and the operator

A is given by (2.2) with k(w, v) = e-(w2+ 2Z, we obtain the regularized
solution

(21r)2 1 + A(w 2 + v) ,

4



@4

tt 
0

ofterglrzto n cl aaeeFigure 1: The optimal filter is plotted in the space domain for different values

of th e u a i a i n a d s a e p r m t er -A

that corresponds, in the Fourier domain, to filtering the data with

1, + ,'- .( j + v 2 e '-)

The term k(wj, v) approximates the point spread function of the imaging
device. For the human eye the k(w, vi) is described by a Bessel function and

Gaussian can be a good approximation. In this case the bandwidth (0)

of the point spread function of the pupil is of the order of 20 seconds of arc
which p degree square. For CD cameras

the andidt isles thn apixel, restricting the effect of this term. In our
The case b=0.0 gives the PVY filter. In this case the filter is not smooth

enouh t enuredifferentiability with a second order differential operator

suc astheLapacin ad ahigher order stabilizer is needed '. For b > 0
this disappears. The filter is plotted (b = 0.5) in the space

domin or iffren vauesof the parameter A (see figure 1), which controls
the size of the filter.

tAteond i shos hto obtain the Wiener filter using the variational
metho. Wrte han ee hathe Wiener filter is slightly different from the
otimal fier, because of the stabilizer term.
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Figure 2: The relation between A and a - the width of the optimal filter and
J,

of the Gaussian, respectiv'ely. A =ge o

4 Filters: Optimal, Gaussian, PVY and Wiener

4.1 The relation between A , a , a and y

In order to compare the filters, we have to assume an equivalent criterion for
the Optimal filter, the Gaussian filter, PVY filter and Wiener filter. A pos-
sible criterion is to choose the same half amplitude in the freque.,cy domain.

1) Gaussian-filter - 1 e Z he= e 2 t hen w. =

2) ptialfiler- e-6.2 he A" eb2

3) PVY-filter - then aw 4 = 1
4) Wiener-filter - i _ -, then y=e -

Then we plot a graph o x A for b=0.5 per pixel square (see figure 2)

We notice here the stability of the parameter o, (the bandwidth,in pixel
unity,of a filter) with respect to the parameter A.

Another criterion for equivalence is to chose filters that have the same
bandwi4th in their second-derivative (see figure 4). This is important when
computing zero-crossings, since in this case the desired operator of convolu-
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tion is the second derivative of the filter. The value of the parameter A may
vary with these different definitions, but the actual bandwidth of the filter
will not vary significantly.

5 The Optimal Scale

In order to find the optimal scale we vary the parameter A to obtain the
closest solution to the true solution. More precisely (see appendix 3), we
minimize

1A )Ay fL: f 2(w2 + v2 )'S(u;, v) + e- b(w2+0)N(w,V)E {Izx (x, y)- ZT(X,'Y)12 = .-i; - o. _b(W2+&,) + 2( + v2)2] 2  vd,. ,dv
_0+A(w 2 + 2)1 (5.1)

where E{.} is the expectation value operator, S(w, v) is the spectral density
(power spectrum) of zT(z, y) and N(w, v) is the spectral density of v(x, y),
assuming that v(X, Y) is stationary.
Differentiating equation 5.1 with respect to A we obtain

j j e- b +0)s(w,v)(W2 + V2)' 100 faaN(w v)e-b( 2+/ 2 )(w2 + v2)2 d

(A(W2 + V2 )2 )3  d (e + + A(W2 + L2 )2 )3

(5.2)
For the discrete case the space is defined in a grid with N x M pix-

els and the spatial frequency given by w1 = -i and vi = Lj where i =
0, and 0, , .. We follow the same calculations

as in the continuous case and keeping the order of the stabilizer a general
parameter p (before we set p = 2). Using the symmetry with respect to zero
of S(w, v) and N(w, v) one obtain similarly to equation 5.2 the equation

S-b 2 ((*L)'+(k))S(i,j)(27r)4p((,)
2 + () 2 )2P

E EA 3v

i= j=O e-b2r(<k)2+( )2)+ A(27r) 2p((k) 2 + (1) 2)p)

2 N(i+j)e- 'a)< )(2r)2P(( )2 + (A) 2)p

i-O jO (e-b21r((k)2+( )2) + A(27r) 2p((i) 2 + )2)P

7



Within the range of the parameter A there are two cases two consider.
One for very small values, i.e. when A -- 0, and the other case for A not small.
The second case is applicable whenever the signal-to-noise ratio is small and
to find A one has to solve equation 5.2b. The first case is applicable whenever
the signal-to-noise ratio is very small and the following short cut to find A
can be used. We assume the asymptotic values

lim S(w;, V) - + -) c > 0 lim N(.;,v) - N. a 0
L 0(,A2 + v2)c W. 0 W2I-V )

and considering the case with white noise (a = 0) we obtain (see appendix
4) A as the solution of

-b(~o )'- =ln[A~c(- )c-P2b(--A) cP -t-(4p- 1)) / (4bUL-A)cP-t-2p1J

(5.3)

For the case b = 0.0 (the PVY filter) we get A = (2p + 1/4p - 1) (-)P

A graph of signal-to-noise ratio versus A for b = 0.5 per pixel square and
is plotted in figure 3. Thus the optimal size of the filter can be obtained
directly from an estimate of the signal-to-noise ratio for any given image.
The equation 5.3, for finding the parameter A, turns out to be sensitive when
we fix the value of the signal-to-noise ratio and vary the values of b or c.
However the relevant parameter, namely, the width of the filter is not very
sensitive to it. In our experiments the width did not vary much from 0.8
pixels to 1.1 pixels. The parameter c was varied from 2 to 15, the parameter
p (degree of smoothness) was varied from 2 to 6 and the parameter b (optical
blurring) was varied from 0 to 2. We have to remember that here we are just
considering large values of signal-to-noise ratio, typically -, > 100.

6 Noise Estimation

Here we assume the noise to be caused by the deficiency in the optical sys-
tem or by artificially adding a random variable to the image. So in this way
noise is independent of the recognition task and independent of the scene or
a particular scale. To estimate the noise we use a technique developed by
H.Voorhees ". First, the gradient of the image is computed. A Rayleigh

8
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Figure 3: Signal-to-noise ratio versus A, for b = 0.5. The last curve the
x-axis is given by the width of the filter a

distribution is then fit to the histogram of the norm of the gradient and the
noise parameters are estimated. The signal power is obtained from the vari-
ance of the intensity of the image. With this method the program estimates
from the image data the corresponding signal-to-noise ratio. This ratio gives
A from relations such as equation 5.3 or 5.2b. The results are shown in
figures: 4, 5 and 6. One alternative for noise estimation could be done by
taking a sequence of images and from the temporal correlation obtain the
noise parameters. Another one is, assuming the noise to be white, to find
the average value for large frequencies of the image-spectrum, since typically
for large frequencies the noise is constant and the signal values close to zero.

7 Two perceptual phenomena: explanations
and biological implications

7.1 Coarse quantized images can be better recog-
nized when noise is added

We first discuss the perceptual phenomena of improved recognizability of
coarse quantized images when noise is added5 . Consider an image with 320
by 384 pixels and 8 bits. A coarsely quantized version of it is shown in
figure 5a. The optimal filter for figure 5a, estimated as explained above,

*9
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Figure 4: Zero-crossings , the Laplacian applied to an image that was
smoothed using a Gaussian filter and the optimal filter with the same width
for the second derivative

turns out to have a small scale of ; 1.0 pixel corresponding to very large
signal-to-noise ratio of So/N = 1000.0. We then apply the Canny's edge
detector using a gaussian filter with the same bandwidth predicted by the
regularization, The edges do not easily reveal a face as we see in figure 5c.
Gaussian white noise with standard deviation 70 is added to figure 5a (see
figure 5b), making recognition easier. Estimation of the optimal scale, using
equation 5.2b since the signal-to-noise ratio is small, gives now a width of
-z 6.0 pixels. The corresponding contours (output from Canny's detector)
reveal the face in a much better way.
These results may shed some light on what the visual system may be doing.
Harmon and Julesz a claim that for the quantized image "high frequencies
introduced by quantized blocking mask the lower spatial frequencies which
convey information about the face, preventing recognition". In our frame-
work two processes determine recognizability of the face. The first process
consists of the estimation of the signal-to-noise ratio (S0 /N.). The second
step is to use So/No to set the optimal A for computing the corresponding
"edges". In the case of the quantized image the ratio SO/N is large. A is
then small, -which implies that a large bandwidth channel (in the spatial-
frequency domain) is selected. The zero crossings for this channels do not

10 6
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Figure 5: a,c) Quantized image and edges with a 1.0 pixel. b,d) White
noise, standard deviation of 70 units, was added to the quantized i mage.
Now the edges are computed using o = 6.0 pixels.



easily allow face recognition because they mostly capture the box outlines.
For noisy quantized images the ratio So/N is small and correspondingly A is
large. This implies a filter with small bandwidth. In this case the small band-
width filter suppresses the noise and, as a side effect, also the high frequency
outlines of the boxes.

This explanation is not in contrast with the one given by Canny ' or by
the one given by Morrone, Burr and Ross (1983) when they claim "that added
noise (more high frequencies) destroys the propensity to organize the image
according to its spurious high-frequency structure,...", but is more precise.

7.2 Improved recognizability of coarse quantized im-
ages by blurring

Blurring coarsely quantized images also improves recognition6 . The explana-
tion for this second perceptual phenomena is natural in our model. Consider
the zero crossings of the blurred image. For the Gaussian filter they are
represented by the solution of

V(• 2; XY) * Mai; XY) = 0

Where I(x,y) is the quantized image, * stands for convolution, G(o';x,y)
is the Gaussian and the blurring process is (G(o; x,y) * I(z,y)). Because
all of those operations are linear we can first convolve both Gaussians. In
the Fourier domain this is equivalent to multiplying the Gaussians, and the
multiplication of two Gaussians is a Gaussian with or = [(a, )' + (0-2)2]1/2. So
computing zero crossing of a blurred image is the same as computing zero
crossings of the same image but with larger o, (0, = [(0,1) 2 + (o.2)2]1/2 ).

Therefore blurring is equivalent to using an effectively larger filter for edge
detection. This has the effect of suppressing the spurious high frequency
edges introduced by coarse quantization. I

'Notice that blurring the quantied nouy image has the effect of increasing the esti-

mated signal-to-noise ratio, thereby reducing o,2 to a value close to the one obtained for
the quantized image.

12



8 The Method of Generalized Cross Valida-
tion and Regularization

When So/N cannot be directly estimated, it is natural to consider the
method of Generalized Cross Validation (GCV)8 . The GCV method states
that the optimal value of A can be obtained by minimizing the functional
(here in one dimension)

", Azx~i)- u.]'
V() = I Az(t) -) ) 2 w(A) (8.3)

where wAk(A) = (1 - akk(A))/(i - El o aj,(A)) and akk(A) = !(Az, )(t).
From here on we use the Gaussian filter , since would be computationally
more expensive to use the optimal filter. Equation 8.3 reduces to

_ e --' rZ(k) - i
72P; i=o'" k=o

The method is computationally expensive but intrinsically parallel. We have
implemented it on the Connection Machine 2. We tested this method on dif-
ferent images including the ones in figure 5 with various amounts of noise. We
notice a consistency of the GCV with the results obtained with the standard
regularization. The GCV gave allways (see figure 6) a slightly mailer value for
the parameter A (and a, the width of the filter). We point out that equation
5.3 is just applicable when the signal-to-noise ratio is high (higher than 200)
and the other cases we used equation 5.2b. The results of applying Canny's
edges detector with both estimates of the parameter suggest a slightly better
performance for the standard regularization method. For large amount of
noise as in figure 5b we obtained significantly different results. For figure
5c for example the GCV method gave o" = 3.5 pixels as oppose to 6.0 given
by the standard regularization method. This suggests that since no noise
estimation is involved in the GCV method whenever the signal-to-noise ratio
is small the standard regularization is going to give better results. Typically
slices of the image of size 80 pixels require 20 milliseconds for computing
V(o,). Using Newton's method to find the minimum, the algorithm con-
verges after 10 iterations of V(o). Therefore the GCV method takes in this

'The Connection Machine is a massivelly parallel computer with 65,536 processors

130



case 0.2 seconds to find the optimal o,. In figure 6 we show several examples
where the optimal scale was estimated with the standard regularization and
CCV method-:.

It is interesting to notice that for the figure 6.a the optimal scale was for
A = 0.1 (o, = 0.91 pixels), however there are two distinct scales for this image
that could be considered optimal. The coarser scale was not captured with
any regularizat ion niethod. A possible way of obtaining both scales would
be by reconsi~ieringa the definition of noise or signal. For instance if the noise
was definedi~ 6e trie medium and high frequency of the spectrum then the
noise estimation ,vould be higher than the one we used and the coarser scale
would be optimral.

Eigiurt 6. 5t-cfnl exram pies of applying the stan, !rd regularization method

and the (TC in' tizod to obtain the opti mal scale

1 . I I R

1VestrMns and Canny's edges with a 0.86 and o = 0.66. Cross-

validation: (7- O~hfi pixrels, standard- regularization:. a = 0.86 pixels

14
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Ericqn and Canny's edges with a = 6.00 and a - 3.5. Cross-validation:
a = 3.48 pixels, standard-regularization: o = 6.08 pizels. We solved equation
5.b since So/.Vo ratio smaller than 200.

9 Conclusion

We have derived rigorously the optimal way of filtering images prior to nu-
merical differentiation. We also obtained the precise relation between the
scale of the filter A and the signal-to-noise ratio of the image. Some bio-
logical implications were also considered. In particular we suggested that
humans can estimate the signal-to-noise ratio in the image from which the
scale A is computed. Only channels with the appropriate spatial-frequency
band are then used, the others being inhibited. In this framework it is possi-
ble to understand th- perceptual phenomena of improved recognizability of
coarsely quantized images when noise is added. When the signal-to-noise ra-
tio is large, the estimated A is small and the associated edges do not provide
good information for recognition. When So/N is smaller, the estimated A is
larger: the edges then provide better information for recognizing the face in
the image. When the signal-to-noise ratio cannot be estimated, it is possible
to use the method of Cross Validation for estimating the optimal A.

Acknowledgments: We are grateful to A. Yuille for many discussions (with
D.G.). Thanks to E. Hildreth for the suggestions, to E. Gamble, M. Gen-
nert, and H. Voorhees who were always helpful and to J. Little for the last
comments.
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Appendix 1: Deviation of the regularized solution from the ex-
act one and the stability of the solution

The regularized solution can be written in the form (see Chapter 3)
1 [00 [00 f(w,v,A)

Z'(X, y) = (2 too K(w)K(v) UT(W, v)e-(ux+vy)dwdv+

1 ( f(W,v,A)
+27r) 2  V(w, v) e-i(ux+LI)dw dv

then
1 {f(w,v,A) - 1}

Z (X,Y) ZT(X,y) = (2 ) K(w)K(v) UT(W, v)e-(wx+v3)dw dv+

+ 17)2-L f(w, v, A) (w, V)e-'(wx+u.)dw dv (al)
K(w) K (v) v

Now one defines

S 1 If(w, v,\) - }UT(W v)(wx+P)dwdvAs(t,) = - ~ )~) ( e' +'a'u(i.a2)
(2)2 f(w, v) dv

AN(t,A) = j_0 0 j_ (L,,r V(W e-'(w"+YY)dwdv. (La3)
(2ir) 2 f. J K(w)K(v) , ' + d

so that z(x,y) - ZT(X , y) = As(x, y, A) + AN(x , y, A) One notices that equa-

tion (1.a2) characterizes the influence of the regularization and equation
(1.a3) characterizes the influence of the noise.
Under these assumptions, the variance of the random function AN is

ES{A2(t, A)} = W2 (A) = 1_,o f 2(A,w,v),N(., )dwdL
N 2721o L(w, v)

and A2 (A) = sUptA (t, A)
How stable is the regularized solution; more precisely, how much does the
regularized solution change with a change in the order of the stabilizer p ?
It is possible to show that:
1) The asymptotic ( w, v -* oo ) behavior of As and AN are the same for
stabilizers of the form

M(w,v) = (W2+v 2)I+ap_,(w 2+v 2)P-1+...+ao or M(w,v) = (w2+v 2 )P
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2) From formula 5.1

T(A,p) = 1j 0 0  A2(w2 + [ , )PS(w,Vl d) d v +  L(w)N(w) 7)]; =
F;-1.[L(w, v) + A(w2 + V2 )pJ2  1 Lw, v) + A(w2 + V2)P 2  j

= A2(A) + P2(A)

obviously, A is a function of p. Consequently, T(A,p) = 0(p) and the function
0,(p) has a unique minimum at p = po = c - a, and increases monotonically
in the interval p > p0 with a finite limit for p -- oo. Tikhonov 1 has shown
these results for the one dimensional case.
Defining the measure of stability for arbitrary p > 0 as being

O(P) - Vb(Po)

one has from Tikhonov 1

0 < (P) - (po) < 0
- O(Po) 1 - -Y

where -y - 2+c-2a and n is the order of smoothness of the operator K(w)
i.e., how fast k(w) --, 0 when w --+ oo

For the case where k(w) = e- t w2 then n --+ oo. Therefore ,W,()(po)' (P ) 0 ,

which is to say that the function 0(p) is weakly dependent on the order
p of the regularization. Consequently, one can quite justifiably replace the
optimal order of regularization p0 with an arbitrary order p > p0 . For white
noise p0 = c and for p = 2 one will be safe whenever working with images
that at high frequencies do not fall to zero faster than w-2 .
It is clear is that if dealing with images with different asymptotic behavior,
one can reset p to give a good solution, and the stability for higher p will be
guaranteed.

In practice we are interested in the stability of the scale of the filter and
we notice that the actual width of the filter did not vary more than 0.4 pixels
when the parameters c, p and b (the point spread function parameter) were
varied.
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Appendix 2: The connection between the regularization method
and optimal Wiener filtering.

The regularized solutions of equation 2.1 is

Z'\ (X, Y)= i f_- k(-w)k(-V)u(W,V)e_.(wx+))d

(2 , 1)r)2 , ) + AM(wv)

and can be written in the form of a convolution

ZA(t) = L,(t - ,r)u(,r)dT

where

LA(t - T) = 1 f f0 k(-w)k(-V) e_(wx+Y)dw
(27r) 2 oo Io L(w, v) + AM(w, v)

Now taking T(AM) (formula 5.1), from the condition that this functional be
minimized on the set of functions M(w, v), one finds by elementary calcula-
tions that the minimum is attained with the function

M(w, V) = M(w, V) = 1 N(w, v)

A S(w, V)

Therefore the approximate (regularized) solution zop(x, y) of equation 2.1
obtained is

1 [0 [00 k(-w)k(-v)u(w, )_ +i( )dw'
Zop(X,y) =(2r)2 f-- oo L(w, v) +

SI w,a)

which is independent of the parameter A. It coincides with the result of
applying the optimal Wiener filtering to find z(x, y) from u(x, y) = UT(X, y) +
v(X,y).
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Appendix 3: The expression for E{ jzA(t) -ZT( t)12 }

We show the result for a more general class of solutions where the smoothing
term is given by M (w, v) = (w 2 +,V 2 )P. Notice that L(w, v) = k(-w)k(-v)k(w)k(v).
We have

ZA(X, Y) -ZT(X, Y)=

k( -W)k( -a)[UT( W, v) + v(W, a')] Z( '}~w+)wa
(2ir )-~~~ 1L(w, v') + AM(w, v')

[0[0L(w,Va)ZT(W,v) + k(-W)k(-')v(w) -('+Yd
= 2r) 00 J-00 L(w, v~) + AM(w, v) ZT(W, a')}&ie~dI~wz

00 wk-vvw v') AM(w, V)ZT(W, a')

(2) -1 L, v) + AM(w, v') L~w v) + AM(w, v)C(~3+a'~~&'a

since UT(W, V) = k(w)k(V)ZT(W, v'). Therefore

E{Iz,\(x, y) - ZT(X, Y)12

=E I- 1 (0 0k(-w)k(-')v(w, v') - AM(w, a')ZT(W, a')

( 2ir)2J J__ L(w, v') +AM(w, v') ]d d
1 (00fk(&w')k(-")v(w', ") - AM(w', a")ZT(W', V') Je-(wI+I)dw dvl~t

(2ir)2 1. -.0~ 0  L(wd, V') + AM(wd, V")

(47)2 L~, v +AM(w, a')]L(w', V") + AM(u', 1,1)]+

+ k( -w)k(-')k(-w')k(-v")E v(w)v(Wf I a")} eiwu~e'L")ddd'v
fL(w, v') + AM(w, a')]fL(w', V") + AM(w', v) ]e w ' a

since Elv(w, v')} = Efv(w.', v')} = 0. For stationary random processes,

E{ZT(W, a').ZT(W', V')} = S(w, V)6(W + W')b(a' + V")

Efv(w, v)v(w, a")) = N(w, a')S(w + w')6(a' + v"),

where 6(w + w') is Dirac's delta function. Performing the integration in
the last expression with respect to w' and using the properties of the delta
function and the fact that M(w) and L(w) are even functions, one obtains
the value of the deviation

E Z (-, ) ZTXY)1}- T1(AM) 1 2~ 10. 0 2M 2(W, V)S(W , v') + L(w, a')N(w, v) dwdz,~lIA~J'TY'ZI~f '"' 4r.J _ [L(w, v') + AM(w, v')12
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Appendix 4: Solving equation 5.2, based on Tikhonov

The argument for using the asymptotic expressions (p is the order of differ-
entiation in the smoothing term) follows immediately from

2()= 00 A e b(w2 ±L?)S(w,, V)(W 2 + V2)pdw dv+(e-(2+. 2) + A(L2 + V2)p) 3

since Wp2(A) --+ oo as A --+ 0. On the other hand, for any fixed A > 0,
the integral p2(A) converges. Therefore, for sufficiently small values of the
parameter A , the basic contribution to W is provided by large frequencies w.
Then one can replace equation 5.2 by

JO 10 A -b(W2+L2)so(w2 + A)P - c  00100 e -b( 2 +V 2 )No(W2 + v2 )p-a
(00 -_______________dw dv (b(W2+L'2) +A~

(5.2b)
with the change of variables w = cosO and v = sinO which imply 2 =

w2 + V2 and dw dv = d dO . We can rewrite equation (5.2b) as
A ",- d = o N ( -_ (5.3b)

j0 L() P~+ dA =100 (L0 8(e) + p)

where Ls( ) = e-b 2 The integrals

fI' Las()p2 a +l t fo= La.( ) 2p-2c+

]o(La() + A p)3 f  (La.( ) + A P)3

are evaluated by the method of steepest descent and are equal to

O P, - 2 + ,, ( ) f /"f L,..(6) + 3'y , ",1 + o(AI)]

p- 2a+lL(6)
= {L°(6) + A"}3Vf(,)l + o(AI)],

where

f 1 ~A) =Al& 2p- 2a+L( )

{L..( ) + A~p) 3

21



and the double prime denotes the second derivative with respect to . Here,
j is a : oot of the equation

(-L.,+) )dL,, 2p- 2a -2=
(-2L.. + ACP)a - (4p + 2a)AC-lL., + La =0

Substituting the values found for I, and 12 into equation (5.3b) and keeping
only the principal terms, one obtains the following equation for determining
the optimal A

A = LO ()]-2p+2-2a
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